论文标题

用于解释基于CNN的文本分类模型的塑造值

SHAP values for Explaining CNN-based Text Classification Models

论文作者

Zhao, Wei, Joshi, Tarun, Nair, Vijayan N., Sudjianto, Agus

论文摘要

深度神经网络越来越多地用于自然语言处理(NLP)模型。但是,解释和解释复杂算法的结果的需求限制了其在银行等受监管行业中的广泛采用。最近有关于与结构化数据的机器学习算法解释性的工作。但是,对于NLP应用程序的技术有限,由于词汇的大小,高维质的大小以及考虑文本连贯性和语言结构的需求,问题更具挑战性。本文开发了一种计算形状值的方法,以用于基于CNN的文本分类模型的局部解释性。该方法还扩展到计算全球得分以评估特征的重要性。结果在亚马逊电子审查数据的情感分析中进行了说明。

Deep neural networks are increasingly used in natural language processing (NLP) models. However, the need to interpret and explain the results from complex algorithms are limiting their widespread adoption in regulated industries such as banking. There has been recent work on interpretability of machine learning algorithms with structured data. But there are only limited techniques for NLP applications where the problem is more challenging due to the size of the vocabulary, high-dimensional nature, and the need to consider textual coherence and language structure. This paper develops a methodology to compute SHAP values for local explainability of CNN-based text classification models. The approach is also extended to compute global scores to assess the importance of features. The results are illustrated on sentiment analysis of Amazon Electronic Review data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源