论文标题

安德森加速地震反转

Anderson Acceleration for Seismic Inversion

论文作者

Yang, Yunan

论文摘要

最先进的地震成像技术将反转任务(例如FWI和LSRTM)视为PDE受限的优化问题。由于大规模的性质,在实践中首选基于梯度的优化算法以迭代更新模型。高阶方法收敛于更少的迭代,但通常需要更高的计算成本,更多的线路搜索步骤和更大的内存存储。必须考虑这些方面之间的平衡。我们建议使用安德森加速度(AA),这是一种加快定点迭代的融合的流行策略,以加速最陡峭的下降算法,我们在创新中将其视为固定点迭代。与未知参数的维度无关,实施该方法的计算成本可以降低为极为低维的最小二乘问题。低级更新可以进一步降低成本。我们讨论AA与其他众所周知的优化方法(例如L-BFG和重新启动的GMRE)之间的理论联系以及差异,并比较其计算成本和内存需求。用于Marmousi基准的FWI和LSRTM的数值示例证明了AA的加速作用。与最陡峭的下降方法相比,AA可以实现快速的收敛并使用一些准Newton方法提供竞争结果,从而使其成为地震反演的有吸引力的优化策略。

The state-of-art seismic imaging techniques treat inversion tasks such as FWI and LSRTM as PDE-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line search steps, and bigger memory storage. A balance among these aspects has to be considered. We propose using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the dimensionality of the unknown parameters, the computational cost of implementing the method can be reduced to an extremely low-dimensional least-squares problem. The cost can be further reduced by a low-rank update. We discuss the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted GMRES and compare their computational cost and memory demand. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest descent method, AA can achieve fast convergence and provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源