论文标题

学习稳健对象跟踪的全球结构一致性

Learning Global Structure Consistency for Robust Object Tracking

论文作者

Li, Bi, Zhang, Chengquan, Hong, Zhibin, Tang, Xu, Liu, Jingtuo, Han, Junyu, Ding, Errui, Liu, Wenyu

论文摘要

快速的外观变化和类似对象的分散是视觉对象跟踪中最具挑战性的两个问题。与许多专注于仅建模目标的现有追踪器不同,在这项工作中,我们考虑了整个场景的\ emph {瞬态变化}。关键的见解是,整个场景的对象对应关系和空间布局在连续的帧中是一致的(即,全球结构一致性),这有助于使目标与干扰因素相处。此外,建模瞬态变化使得可以在快速变化下定位目标。具体而言,我们提出了一个有效而有效的短期模型,该模型学会在短时间内利用全球结构一致性,从而可以处理快速的变化和干扰物。由于短期建模缺乏处理闭塞和视图,因此我们采用了长期术语范式,并使用长期模型,该模型在不存在目标或目标不存在时纠正短期模型。仔细组合这两个组件,以达到跟踪过程中稳定性和可塑性的平衡。我们经验证明,拟议的跟踪器可以解决两个具有挑战性的方案,并在大规模的基准测试中验证它。值得注意的是,我们的跟踪器将dov2018的最先进的绩效从0.440提高到0.460,从0.611提高到0.640,而NFS从0.619提高到0.619。

Fast appearance variations and the distractions of similar objects are two of the most challenging problems in visual object tracking. Unlike many existing trackers that focus on modeling only the target, in this work, we consider the \emph{transient variations of the whole scene}. The key insight is that the object correspondence and spatial layout of the whole scene are consistent (i.e., global structure consistency) in consecutive frames which helps to disambiguate the target from distractors. Moreover, modeling transient variations enables to localize the target under fast variations. Specifically, we propose an effective and efficient short-term model that learns to exploit the global structure consistency in a short time and thus can handle fast variations and distractors. Since short-term modeling falls short of handling occlusion and out of the views, we adopt the long-short term paradigm and use a long-term model that corrects the short-term model when it drifts away from the target or the target is not present. These two components are carefully combined to achieve the balance of stability and plasticity during tracking. We empirically verify that the proposed tracker can tackle the two challenging scenarios and validate it on large scale benchmarks. Remarkably, our tracker improves state-of-the-art-performance on VOT2018 from 0.440 to 0.460, GOT-10k from 0.611 to 0.640, and NFS from 0.619 to 0.629.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源