论文标题
随机产品公式的浓度
Concentration for random product formulas
论文作者
论文摘要
量子模拟在量子化学和物理学中具有广泛的应用。最近,科学家已经开始探索使用随机方法加速量子模拟的使用。其中,已知一种简单而强大的技术称为QDRIFT,可以生成随机产品公式,平均量子通道近似理想的演化。 QDRIFT实现了一个不明确取决于哈密顿式术语数量的门数,该术语与铃木公式形成鲜明对比。这项工作旨在通过全面分析QDRIFT生成的随机产品公式的单一实现来了解加速的起源。主要结果证明,随机产品公式的典型实现近似于理想的统一进化,直至小钻石 - 标志误差。门的复杂性已经独立于哈密顿量中的术语数量,但取决于哈密顿量中的系统大小和相互作用强度的总和。值得注意的是,从任意但固定的输入状态开始的相同随机演变产生了适合该输入状态的较短电路。相反,在确定性的环境中,这种改进通常需要初始的状态知识。证明取决于矢量和基质群虫的浓度不平等,该框架适用于其他随机产品公式。某些通勤的哈密顿人使我们的界限饱和。
Quantum simulation has wide applications in quantum chemistry and physics. Recently, scientists have begun exploring the use of randomized methods for accelerating quantum simulation. Among them, a simple and powerful technique, called qDRIFT, is known to generate random product formulas for which the average quantum channel approximates the ideal evolution. qDRIFT achieves a gate count that does not explicitly depend on the number of terms in the Hamiltonian, which contrasts with Suzuki formulas. This work aims to understand the origin of this speed-up by comprehensively analyzing a single realization of the random product formula produced by qDRIFT. The main results prove that a typical realization of the randomized product formula approximates the ideal unitary evolution up to a small diamond-norm error. The gate complexity is already independent of the number of terms in the Hamiltonian, but it depends on the system size and the sum of the interaction strengths in the Hamiltonian. Remarkably, the same random evolution starting from an arbitrary, but fixed, input state yields a much shorter circuit suitable for that input state. In contrast, in deterministic settings, such an improvement usually requires initial state knowledge. The proofs depend on concentration inequalities for vector and matrix martingales, and the framework is applicable to other randomized product formulas. Our bounds are saturated by certain commuting Hamiltonians.