论文标题

由马尔可夫水库驱动的系统的通用运输公式

Generic transport formula for a system driven by Markovian reservoirs

论文作者

Jin, Tony, Filippone, Michele, Giamarchi, Thierry

论文摘要

我们为相互作用和非相互作用系统中流动的当前流动提供了一个通用的,紧凑的公式,该公式是由Lindblad跳跃操作员描述的有偏见的储层驱动的。我们表明,在高温和化学潜力的极限上,我们的配方等同于众所周知的梅尔·翼元公式,该公式描述了流过与费米子浴的系统流动的电流,因此弥合了两种形式主义之间的间隙。我们的公式提供了一种系统的方法来解决相关系统的运输特性,从而强烈驱动了平衡。作为例证,我们在三种情况下提供了电流的明确计算:{\ it i)}单点杂质{\ it ii)}一个自由的费米子链{\ it iii)}一个带有链条损失/增益项的费米子链。在最后一个情况下,我们发现整个系统中的电流具有相同的损失或增益项行为,并取决于以非单调方式的损失/增益率。

We present a generic, compact formula for the current flowing in interacting and non-interacting systems which are driven out-of-equilibrium by biased reservoirs described by Lindblad jump operators. We show that, in the limit of high temperature and chemical potential, our formula is equivalent to the well-known Meir-Wingreen formula, which describes the current flowing through a system connected to fermionic baths, therefore bridging the gap between the two formalisms. Our formulation gives a systematic way to address the transport properties of correlated systems strongly driven out of equilibrium. As an illustration, we provide explicit calculations of the current in three cases : {\it i)} a single-site impurity {\it ii)} a free fermionic chain {\it iii)} a fermionic chain with loss/gain terms along the chain. In this last case, we find that the current across the system has the same behavior for loss or gain terms and depends on the loss/gain rate in a non-monotonic way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源