论文标题
在转换模型中消失了错误
Disappearing errors in a conversion model
论文作者
论文摘要
相同的基本微分方程模型已被调整为不同州之间人口成员的时间依赖性转换。转化模型已应用于不同的情况下,例如流行病学感染,创新扩散的低音模型以及公众舆论的意识运动模型。例如,该模型的思想动力学版本预测了公众意见的变化,以响应有说服力的消息延伸到不确定的过去。所有消息均通过错误测量,本章讨论了消息测量中的错误如何随时间消失,以使预测的意见值逐渐不受过去的测量错误的影响。使用形式统计,灵敏度分析和自举差异计算讨论预测不确定性。本章介绍了有关丰田汽车制造商在两年半的时间内根据每日Twitter分数计算出的有关丰田汽车制造商的意识动力学预测。在这段时间里,丰田突然突然遭受了坏消息的猛烈袭击,该模型可以准确地预测随附的丰田意见和不利看法的提高。
The same basic differential equation model has been adapted for time-dependent conversions of members of a population among different states. The conversion model has been applied in different contexts such as epidemiological infections, the Bass model for the diffusion of innovations, and the ideodynamic model for public opinion. For example, the ideodynamic version of the model predicts changes in public opinions in response to persuasive messages extending back to an indefinite past. All messages are measured with error, and this chapter discusses how errors in message measurements disappear with time so that predicted opinion values gradually become unaffected by past measurement errors. Prediction uncertainty is discussed using formal statistics, sensitivity analysis and bootstrap variance calculations. This chapter presents ideodynamic predictions for opinion time series about the Toyota car manufacturer calculated from daily Twitter scores over two and half years. During this time, there was a sudden onslaught of bad news for Toyota, and the model could accurately predict the accompanying drop in favorable Toyota opinion and rise in unfavorable opinion.