论文标题
计算病理学的方向访问无监督的表示
Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
论文作者
论文摘要
无监督的学习可以使建模复杂的图像无需注释。通过这种模型学到的表示形式可以促进对大图像数据集的任何后续分析。 但是,某些导致图像无关的生成因素可能会纠缠在这种学习的表示形式中,从而导致对任何后续使用的负面影响。例如,成像对象的方向通常是任意/无关紧要的,因此可以学习一个表示方向信息与所有其他因素分开的表示形式。 在这里,我们建议通过利用旋转等级卷积网络的群体结构来扩展变异自动编码器框架,以了解组织病理学图像的方向分解的生成因子。这样,我们强制对潜在空间进行新颖的分区,以使面向和各向同性的组件分开。 我们在数据集上评估了该结构化表示,该数据集由专家病理学家评估核性质形态和有丝分裂活性的组织区域。我们表明,受过训练的模型有效地解开了单细胞图像的固有方向信息。与经典方法相比,在随后的任务中,产生的细胞亚种群的汇总表示会产生更高的性能。
Unsupervised learning enables modeling complex images without the need for annotations. The representation learned by such models can facilitate any subsequent analysis of large image datasets. However, some generative factors that cause irrelevant variations in images can potentially get entangled in such a learned representation causing the risk of negatively affecting any subsequent use. The orientation of imaged objects, for instance, is often arbitrary/irrelevant, thus it can be desired to learn a representation in which the orientation information is disentangled from all other factors. Here, we propose to extend the Variational Auto-Encoder framework by leveraging the group structure of rotation-equivariant convolutional networks to learn orientation-wise disentangled generative factors of histopathology images. This way, we enforce a novel partitioning of the latent space, such that oriented and isotropic components get separated. We evaluated this structured representation on a dataset that consists of tissue regions for which nuclear pleomorphism and mitotic activity was assessed by expert pathologists. We show that the trained models efficiently disentangle the inherent orientation information of single-cell images. In comparison to classical approaches, the resulting aggregated representation of sub-populations of cells produces higher performances in subsequent tasks.