论文标题

关于温带行星硅酸盐风化机制的岩性控制

Lithologic Controls on Silicate Weathering Regimes of Temperate Planets

论文作者

Hakim, Kaustubh, Bower, Dan J., Tian, Meng, Deitrick, Russell, Auclair-Desrotour, Pierre, Kitzmann, Daniel, Dorn, Caroline, Mezger, Klaus, Heng, Kevin

论文摘要

在行星表面的硅酸盐岩石的风化可能会从大气中降低CO $ _2 $,以最终在行星内部埋葬和长期存储。人们认为该过程为碳酸盐硅酸盐循环(碳循环)提供了基本的负反馈,以维持地球上的克莱门特气候和潜在的温带系外行星。我们实施热力学,以确定风化速率,这是表面岩性(岩石类型)的函数。这些速率提供了上限,可估计调节气候的最大风化速率。该建模表明,在给定岩石而不是单个矿物质中矿物组合的风化对于确定行星表面上的风化速率至关重要。通过实施流体传输控制方法,我们进一步模拟化学动力学和热力学,以确定受地球大陆和海洋壳岩性及其上层地幔岩性启发的三种岩石的风化速率。我们发现,类似大陆壳的岩性的热力学风化速率比海洋壳的岩性特征低约1-两个数量级。我们表明,当CO $ _2 $压力降低或表面温度升高时,热​​力学而不是动力学会对风化产生强大的控制。风化和热力学限制的风化方案取决于岩性,而供应限制的风化与岩性无关。我们的结果表明,热力学限制的硅酸盐风化的温度敏感性可能会激发对碳循环的积极反馈,在碳周期中,随着表面温度的增加,风化速率降低。

Weathering of silicate rocks at a planetary surface can draw down CO$_2$ from the atmosphere for eventual burial and long-term storage in the planetary interior. This process is thought to provide an essential negative feedback to the carbonate-silicate cycle (carbon cycle) to maintain clement climates on Earth and potentially similar temperate exoplanets. We implement thermodynamics to determine weathering rates as a function of surface lithology (rock type). These rates provide upper limits that allow estimating the maximum rate of weathering in regulating climate. This modeling shows that the weathering of mineral assemblages in a given rock, rather than individual minerals, is crucial to determine weathering rates at planetary surfaces. By implementing a fluid-transport controlled approach, we further mimic chemical kinetics and thermodynamics to determine weathering rates for three types of rocks inspired by the lithologies of Earth's continental and oceanic crust, and its upper mantle. We find that thermodynamic weathering rates of a continental crust-like lithology are about one to two orders of magnitude lower than those of a lithology characteristic of the oceanic crust. We show that when the CO$_2$ partial pressure decreases or surface temperature increases, thermodynamics rather than kinetics exerts a strong control on weathering. The kinetically- and thermodynamically-limited regimes of weathering depend on lithology, whereas, the supply-limited weathering is independent of lithology. Our results imply that the temperature-sensitivity of thermodynamically-limited silicate weathering may instigate a positive feedback to the carbon cycle, in which the weathering rate decreases as the surface temperature increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源