论文标题
线性反应的异常反应扩散方程
Anomalous reaction-diffusion equations for linear reactions
论文作者
论文摘要
众所周知,即使在最简单的情况下,众所周知,众所周知,涉及异常扩散和反应的进化方程也很困难。与正常的扩散相反,反应动力学不能仅通过将反应项添加到描述空间运动的方程式中,将反应动力学纳入建模范围的进化方程。一系列先前的作品是在一个空间维度中延伸颗粒的时空演化的分数反应扩散方程,并在一个空间维度下具有有限数量的离散状态之间的线性反应。在本文中,我们首先简短而基本证明了这些先前的结果。然后,我们展示了该参数如何为更一般的情况提供进化方程,包括在任意$ d $ d $维空间域中的任何分数fokker-planck方程后进行次扩散,而无限多个离散状态之间的时间依赖性反应。与以前采用多种技术数学方法的作品相反,我们的分析表明,进化方程遵循(i)描述单个粒子的随机空间和离散过程的概率独立性以及(ii)描述空间运动的全差异算子的线性。我们还将结果应用于将反应与超扩散相结合的系统。
Deriving evolution equations accounting for both anomalous diffusion and reactions is notoriously difficult, even in the simplest cases. In contrast to normal diffusion, reaction kinetics cannot be incorporated into evolution equations modeling subdiffusion by merely adding reaction terms to the equations describing spatial movement. A series of previous works derived fractional reaction-diffusion equations for the spatiotemporal evolution of particles undergoing subdiffusion in one space dimension with linear reactions between a finite number of discrete states. In this paper, we first give a short and elementary proof of these previous results. We then show how this argument gives the evolution equations for more general cases, including subdiffusion following any fractional Fokker-Planck equation in an arbitrary $d$-dimensional spatial domain with time-dependent reactions between infinitely many discrete states. In contrast to previous works which employed a variety of technical mathematical methods, our analysis reveals that the evolution equations follow from (i) the probabilistic independence of the stochastic spatial and discrete processes describing a single particle and (ii) the linearity of the integro-differential operators describing spatial movement. We also apply our results to systems combining reactions with superdiffusion.