论文标题
在晶格上的强烈非线性加德纳方程中的波浪
Waves in Strongly Nonlinear Gardner-like Equations on a Lattice
论文作者
论文摘要
我们介绍和研究一个晶格方程家族,可以将其视为Gardner方程的强烈非线性离散扩展,或者是Lotka-Volterra链的非凸变体。他们看似简单的形式支持一个非常丰富的复杂孤独模式的家族。这些模式中的某些模式也可以在准冠状作用中找到,但是更有趣的模式,例如相互隔开的孤立波,或可能自发或由于碰撞而逆转其方向的波,是离散领域的内在特征。
We introduce and study a family of lattice equations which may be viewed either as a strongly nonlinear discrete extension of the Gardner equation, or a non-convex variant of the Lotka-Volterra chain. Their deceptively simple form supports a very rich family of complex solitary patterns. Some of these patterns are also found in the quasi-continuum rendition, but the more intriguing ones, like interlaced pairs of solitary waves, or waves which may reverse their direction either spontaneously or due a collision, are an intrinsic feature of the discrete realm.