论文标题
平均值零函数在尺寸二
A singular Moser-Trudinger inequality for mean value zero functions in dimension two
论文作者
论文摘要
令$ω\ subset \ mathbb {r}^2 $为平滑的有限域,$ 0 \ in \partialΩ$。在本文中,我们证明了(0,1)$的任何$β\ the w^{1,2}}(u \ in w^{1,2}(ω),\int_Ωudx = 0,\int_Ω u^2}}} {| x |^{2β}} dx $$是有限的,可以实现。这部分概括了爱丽丝·昌(Alice Chang)和保罗·杨(Paul Yang)(J. DinialialGeom。27(1988),第2、259-296号)的著名作品,他们在$β= 0 $时获得了不平等。
Let $Ω\subset\mathbb{R}^2$ be a smooth bounded domain with $0\in\partialΩ$. In this paper, we prove that for any $β\in(0,1)$, the supremum $$\sup_{u\in W^{1,2}(Ω), \int_Ωu dx=0, \int_Ω|\nabla u|^2dx\leq1}\int_Ω\frac{e^{2π(1-β) u^2}}{|x|^{2β}}dx$$ is finite and can be attained. This partially generalizes a well-known work of Alice Chang and Paul Yang (J. Differential Geom. 27 (1988), no. 2, 259-296) who have obtained the inequality when $β=0$.