论文标题
在中间能量的重离子碰撞中,人工智能在确定影响参数中的应用
Application of artificial intelligence in the determination of impact parameter in heavy-ion collisions at intermediate energies
论文作者
论文摘要
冲击参数是重型离子碰撞(HIC)的关键物理量之一,并且在最终状态下,显然会影响许多可观察到的物体,例如多碎片化和集体流动。通常,它不能直接在实验中进行测量,但可以从最终状态下的可观察结果推断出来。人工智能在学习数据的复杂表示方面取得了巨大的成功,这可以使物理科学中的新颖建模和数据处理方法。在本文中,我们在人工智能领域,卷积神经网络(CNN)和轻梯度增强机(LightGBM)中采用了两种常用算法,以通过分析跨性别动量和快速的事件基础上的跨性动量和快速性来确定影响参数的准确性。 Au+Au与0 $ \ leq $$ b $ b $ b $ \ leq $ 10 fm的冲击参数相撞($ e _ {\ rm lab} $ = $ 0.2 $ 0.2 $ - $ 1.0 $ - $ 1.0 $ gev $/$ nucleon)与超级量定量子分子动力学(ureqular dynamics(ureqmd)模型一起模拟。发现真实影响参数与估计参数之间的平均差异可能小于0.1 FM。 LightGBM算法在这项工作的任务上显示了有关CNN的性能。通过使用LightGBM的可视化算法,可以获得横向动量和速度分布的重要特征图,这可能有助于推断重离子实验中的影响参数或中心性。
The impact parameter is one of the crucial physical quantities of heavy-ion collisions (HICs), and can affect obviously many observables at the final state, such as the multifragmentation and the collective flow. Usually, it cannot be measured directly in experiments but might be inferred from observables at the final state. Artificial intelligence has had great success in learning complex representations of data, which enables novel modeling and data processing approaches in physical sciences. In this article, we employ two of commonly used algorithms in the field of artificial intelligence, the Convolutional Neural Networks (CNN) and Light Gradient Boosting Machine (LightGBM), to improve the accuracy of determining impact parameter by analyzing the proton spectra in transverse momentum and rapidity on the event-by-event basis. Au+Au collisions with the impact parameter of 0$\leq$$b$$\leq$10 fm at intermediate energies ($E_{\rm lab}$=$0.2$-$1.0$ GeV$/$nucleon) are simulated with the ultrarelativistic quantum molecular dynamics (UrQMD) model to generate the proton spectra data. It is found that the average difference between the true impact parameter and the estimated one can be smaller than 0.1 fm. The LightGBM algorithm shows an improved performance with respect to the CNN on the task in this work. By using the LightGBM's visualization algorithm, one can obtain the important feature map of the distribution of transverse momentum and rapidity, which may be helpful in inferring the impact parameter or centrality in heavy-ion experiments.