论文标题

SIGL:通过深图学习确保软件安装

SIGL: Securing Software Installations Through Deep Graph Learning

论文作者

Han, Xueyuan, Yu, Xiao, Pasquier, Thomas, Li, Ding, Rhee, Junghwan, Mickens, James, Seltzer, Margo, Chen, Haifeng

论文摘要

许多用户隐含地假设只有在安装软件后才能利用软件。但是,最近的供应链攻击表明必须确保在安装本身期间确保应用程序完整性。我们介绍了SIGL,这是一种用于在软件安装过程中检测恶意行为的新工具。 SIGL收集了系统呼叫活动的痕迹,构建数据出处图,该图使用具有编码器的图形长期记忆网络(Graph LSTM)的新型自动编码器体系结构和解码器的标准多层感知器进行分析。 SIGL标志可疑安装以及可能是恶意的特定安装时间过程。使用包含现实世界恶意软件的625个恶意安装程序的测试语料库,我们证明了SIGL的检测准确性为96%,在精确度和召回率的测试精度上优于行业和学术界的类似系统,准确性45%。我们还证明,SIGL可以查明最有可能触发恶意行为,在不同的审计平台和操作系统上工作的过程,并且可以训练数据污染和对抗性攻击。它也可以与特定于应用程序的模型一起使用,即使在有新软件版本的情况下,也可以与应用程序元模型一起使用,这些元模型涵盖了广泛的应用程序和安装程序。

Many users implicitly assume that software can only be exploited after it is installed. However, recent supply-chain attacks demonstrate that application integrity must be ensured during installation itself. We introduce SIGL, a new tool for detecting malicious behavior during software installation. SIGL collects traces of system call activity, building a data provenance graph that it analyzes using a novel autoencoder architecture with a graph long short-term memory network (graph LSTM) for the encoder and a standard multilayer perceptron for the decoder. SIGL flags suspicious installations as well as the specific installation-time processes that are likely to be malicious. Using a test corpus of 625 malicious installers containing real-world malware, we demonstrate that SIGL has a detection accuracy of 96%, outperforming similar systems from industry and academia by up to 87% in precision and recall and 45% in accuracy. We also demonstrate that SIGL can pinpoint the processes most likely to have triggered malicious behavior, works on different audit platforms and operating systems, and is robust to training data contamination and adversarial attack. It can be used with application-specific models, even in the presence of new software versions, as well as application-agnostic meta-models that encompass a wide range of applications and installers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源