论文标题

汇聚圆柱冲击波的耗散不稳定

Dissipative instability of converging cylindrical shock wave

论文作者

Chefranov, Sergey G.

论文摘要

在大型固定式SW半径的极限中获得了收敛圆柱强力冲击波(SW)的线性不稳定性的条件,如果可以考虑与平面SW相同的Rankine-Hugoniot跳跃关系。这种不稳定性的条件与平面SW的不稳定性有很大不同,因为圆柱形SW与SW速度方向(从左到右,反之亦然)没有手性对称性。收敛圆柱SW的扰动的指数生长速率仅对高粘度在高的极限,但有限的,雷诺数以及平面SW的不稳定的情况下是阳性的。

The condition of linear instability for a converging cylindrical strong shock wave (SW) in an arbitrary viscous medium is obtained in the limit of a large stationary SW radius, when it is possible to consider the same Rankine-Hugoniot jump relations as for the plane SW. This condition of instability is substantially different from the condition of instability for the plane SW because a cylindrical SW does not have chiral symmetry in the direction of the SW velocity (from left to right or vice versa) as in the case of a plane SW. The exponential growth rate of perturbations for the converging cylindrical SW is positive only for nonzero viscosity in the limit of high, but finite, Reynolds numbers as well as for the instability of a plane SW.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源