论文标题

域名纳入心脏分割的删除表示形式

Disentangled Representations for Domain-generalized Cardiac Segmentation

论文作者

Liu, Xiao, Thermos, Spyridon, Chartsias, Agisilaos, O'Neil, Alison, Tsaftaris, Sotirios A.

论文摘要

由于现有方法无法在不同域的看不见的数据上实现令人满意的性能,因此稳健的心脏图像分割仍然是一个开放的挑战。由于医学数据的获取和注释是昂贵且耗时的,因此最近的工作着重于域的适应和概括,以弥合来自不同人群和扫描仪的数据之间的差距。在本文中,我们提出了两种数据增强方法,这些方法着重于改善状态到现有心脏分割模型的域适应和概括能力。特别是,我们的“分辨率增强”方法通过将图像重新缩放为跨越不同扫描仪协议的范围内的不同分辨率来生成更多样化的数据。随后,我们的“基于因子的增强”方法通过将原始样品投影到分离的潜在空间,并结合了来自不同领域的学习解剖结构和模态因子,从而产生更多的数据。我们的广泛实验表明,在可见的和看不见的域以及模型的概括能力之间对心脏图像分割之间有效适应的重要性。

Robust cardiac image segmentation is still an open challenge due to the inability of the existing methods to achieve satisfactory performance on unseen data of different domains. Since the acquisition and annotation of medical data are costly and time-consuming, recent work focuses on domain adaptation and generalization to bridge the gap between data from different populations and scanners. In this paper, we propose two data augmentation methods that focus on improving the domain adaptation and generalization abilities of state-to-the-art cardiac segmentation models. In particular, our "Resolution Augmentation" method generates more diverse data by rescaling images to different resolutions within a range spanning different scanner protocols. Subsequently, our "Factor-based Augmentation" method generates more diverse data by projecting the original samples onto disentangled latent spaces, and combining the learned anatomy and modality factors from different domains. Our extensive experiments demonstrate the importance of efficient adaptation between seen and unseen domains, as well as model generalization ability, to robust cardiac image segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源