论文标题
caccioppoli type估计和$ \ MATHCAL {H} $ - 矩阵近似为Fem-Bem耦合的倒数
Caccioppoli-type estimates and $\mathcal{H}$-Matrix approximations to inverses for FEM-BEM couplings
论文作者
论文摘要
我们考虑了有限元方法和边界元素方法耦合的三种不同方法:Bielak-Maccamy耦合,对称耦合和Johnson-Nédélec耦合。对于每个耦合,我们提供离散的内部规则估计。结果,我们能够证明存在指数收敛的$ \ MATHCAL {H} $ - 矩阵近似值近似于对应于耦合的最低顺序Galerkin离散化的逆矩阵。
We consider three different methods for the coupling of the finite element method and the boundary element method, the Bielak-MacCamy coupling, the symmetric coupling, and the Johnson-Nédélec coupling. For each coupling we provide discrete interior regularity estimates. As a consequence, we are able to prove the existence of exponentially convergent $\mathcal{H}$-matrix approximants to the inverse matrices corresponding to the lowest order Galerkin discretizations of the couplings.