论文标题

kähler歧管上的Bargmann fock束

Bargmann-Fock sheaves on Kähler manifolds

论文作者

Chan, Kwokwai, Leung, Naichung Conan, Li, Qin

论文摘要

Fedosov在符号歧管上使用了Weyl束的平坦部分来构建星级$ \ star $,从而产生了变形量化。 By extending Fedosov's method, we give an explicit, analytic construction of a sheaf of Bargmann-Fock modules over the Weyl bundle of a Kähler manifold $X$ equipped with a compatible Fedosov abelian connection, and show that the sheaf of flat sections forms a module sheaf over the sheaf of deformation quantization algebras defined $(C^\infty_X[[\hbar]], \ star)$。可以将此支架视为$ l^{\ otimes k} $的$ \ hbar $ - $ k \ to \ infty $,其中$ l $是$ x $和$ \ hbar = hbar = 1/k $的量子线捆绑包。

Fedosov used flat sections of the Weyl bundle on a symplectic manifold to construct a star product $\star$ which gives rise to a deformation quantization. By extending Fedosov's method, we give an explicit, analytic construction of a sheaf of Bargmann-Fock modules over the Weyl bundle of a Kähler manifold $X$ equipped with a compatible Fedosov abelian connection, and show that the sheaf of flat sections forms a module sheaf over the sheaf of deformation quantization algebras defined $(C^\infty_X[[\hbar]], \star)$. This sheaf can be viewed as the $\hbar$-expansion of $L^{\otimes k}$ as $k \to \infty$, where $L$ is a prequantum line bundle on $X$ and $\hbar = 1/k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源