论文标题

使用Bird Eye View表征和CNN在拥挤的高速公路场景中的车辆轨迹预测

Vehicle Trajectory Prediction in Crowded Highway Scenarios Using Bird Eye View Representations and CNNs

论文作者

Izquierdo, R., Quintanar, A., Parra, I., Fernandez-Llorca, D., Sotelo, M. A.

论文摘要

本文描述了一种使用图形表示的新方法来执行车辆轨迹预测。车辆用高斯分布代表到鸟类视野。然后,U-NET模型用于执行序列以进行序列预测。这种基于深度学习的方法已经使用了HighD数据集进行了培训,该数据集在航空影像中的高速公路场景中包含车辆的检测。该问题是作为图像回归问题的图像而面临的,培训网络以了解交通参与者之间的潜在关系。这种方法会估计输入场景的未来外观,而不是轨迹或数字位置。采取了额外的步骤,以通过子像素分辨率从预测的表示中提取位置。已经测试了不同的网络配置,预测错误最多三秒钟是在表示分辨率的顺序。该模型已在高速公路场景中进行了测试,同时在两个相反的交通流中同时进行了30多辆车,显示出良好的定性和定量结果。

This paper describes a novel approach to perform vehicle trajectory predictions employing graphic representations. The vehicles are represented using Gaussian distributions into a Bird Eye View. Then the U-net model is used to perform sequence to sequence predictions. This deep learning-based methodology has been trained using the HighD dataset, which contains vehicles' detection in a highway scenario from aerial imagery. The problem is faced as an image to image regression problem training the network to learn the underlying relations between the traffic participants. This approach generates an estimation of the future appearance of the input scene, not trajectories or numeric positions. An extra step is conducted to extract the positions from the predicted representation with subpixel resolution. Different network configurations have been tested, and prediction error up to three seconds ahead is in the order of the representation resolution. The model has been tested in highway scenarios with more than 30 vehicles simultaneously in two opposite traffic flow streams showing good qualitative and quantitative results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源