论文标题

SMAP:单发多人物绝对3D姿势估计

SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation

论文作者

Zhen, Jianan, Fang, Qi, Sun, Jiaming, Liu, Wentao, Jiang, Wei, Bao, Hujun, Zhou, Xiaowei

论文摘要

从单个RGB图像中恢复具有绝对尺度的多人3D摆姿势是一个具有挑战性的问题,因为从单个视图中固有的深度和尺度歧义。解决这种歧义需要在整个图像上汇总各种提示,例如身体大小,场景布局和人际关系关系。但是,大多数以前的方法都采用自上而下的方案,该方案首先执行2D姿势检测,然后对每个检测到的人单独回归3D姿势和比例,而忽略了全局上下文提示。在本文中,我们提出了一个新的系统,该系统首先回归了身体部位的一组2.5D表示,然后根据以下2.5D表示,重建了3D绝对姿势,并具有深度感知的部分关联算法。这样的单一自下而上的方案使系统可以更好地学习和推理人际关系深度关系,从而改善3D和2D姿势估计。实验表明,所提出的方法在CMU Panoptic和Mupots-3D数据集上实现了最先进的性能,并且适用于野外视频。

Recovering multi-person 3D poses with absolute scales from a single RGB image is a challenging problem due to the inherent depth and scale ambiguity from a single view. Addressing this ambiguity requires to aggregate various cues over the entire image, such as body sizes, scene layouts, and inter-person relationships. However, most previous methods adopt a top-down scheme that first performs 2D pose detection and then regresses the 3D pose and scale for each detected person individually, ignoring global contextual cues. In this paper, we propose a novel system that first regresses a set of 2.5D representations of body parts and then reconstructs the 3D absolute poses based on these 2.5D representations with a depth-aware part association algorithm. Such a single-shot bottom-up scheme allows the system to better learn and reason about the inter-person depth relationship, improving both 3D and 2D pose estimation. The experiments demonstrate that the proposed approach achieves the state-of-the-art performance on the CMU Panoptic and MuPoTS-3D datasets and is applicable to in-the-wild videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源