论文标题

网络活动和身体环境的联合建模,以改善访客行为的预测

Joint Modelling of Cyber Activities and Physical Context to Improve Prediction of Visitor Behaviors

论文作者

Kaur, Manpreet, Salim, Flora D., Ren, Yongli, Chan, Jeffrey, Tomko, Martin, Sanderson, Mark

论文摘要

本文通过利用匿名(OPT IN)Wi-Fi协会和购物中心运营商记录的浏览日志来调查大型室内购物中心用户的网络物理行为。我们的分析表明,许多用户在网络活动和身体环境之间表现出很高的相关性。为了找到这种相关性,我们提出了一种机制,可以将语义上的物理空间标记为具有dbpedia概念丰富的分类信息的物理空间,并计算出代表用户活动的上下文相似性。我们在两种情况下演示了网络物理上下文相似性的应用:用户访问意图分类和未来的位置预测。实验结果表明,对上下文相似性的开发显着提高了此类应用的准确性。

This paper investigates the Cyber-Physical behavior of users in a large indoor shopping mall by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the mall operators. Our analysis shows that many users exhibit a high correlation between their cyber activities and their physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from DBPedia concepts and compute a contextual similarity that represents a user's activities with the mall context. We demonstrate the application of cyber-physical contextual similarity in two situations: user visit intent classification and future location prediction. The experimental results demonstrate that exploitation of contextual similarity significantly improves the accuracy of such applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源