论文标题
在$ 3 $ - 均匀的超图中避免了长度四个周期
On $3$-uniform hypergraphs avoiding a cycle of length four
论文作者
论文摘要
在本说明中,我们表明,$ 3 $ - 均匀的超图中的最大边缘数量为berge周期,最多为$(1+o(1))\ frac {n^{3/2}} {\ sqrt {10}} $。这改善了Győri和Lemons以及Füredi和Özkahya的早期估计。
In this note we show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))\frac{n^{3/2}}{\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya.