论文标题
在有限温度和/或有限密度下的相对论量子场理论中的一环Feynman积分的降低
Reduction for one-loop tensor Feynman integrals in the relativistic quantum field theories at finite temperature and/or finite density
论文作者
论文摘要
\ emph {常规} Passarino-Veltman还原是基于Lorentz协方差的系统程序,可以有效地减少相对论量子场理论(QFTS)在零温度下的一环Feynman积分。但是,由于多体系统的休息参考框架,洛伦兹的协方差明显损坏,该系统的温度和密度在其中测量了温度和密度,从而使\ emph {常规} passarino-veltman降低不再适用,以减少单个环的tenor feynman集成元素。在本文中,我们报告了一个\ emph {广义} passarino-veltman还原,该杂志可以在有限的温度和/或有限密度下有效地简化相对论QFTS中的单环Feynman积分。 \ emph {广义} passarino-veltman还原可以分析相对论QFTS在有限温度和/或有限密度下描述的广泛物理系统中的单循环Feynman积分,例如核物理学中的Quark-Gluon等离子体。
The \emph{conventional} Passarino-Veltman reduction is a systematic procedure based on the Lorentz covariance, which can efficiently reduce the one-loop tensor Feynman integrals in the relativistic quantum field theories (QFTs) at zero temperature and zero density. However, the Lorentz covariance is explicitly broken when either of the temperature and density is finite, due to a rest reference frame of the many-body system in which the temperature and density are measured, rendering the \emph{conventional} Passarino-Veltman reduction not applicable anymore to reduce the one-loop tensor Feynman integrals therein. In this paper, we report a \emph{generalized} Passarino-Veltman reduction which can efficiently simplify the one-loop tensor Feynman integrals in the relativistic QFTs at finite temperature and/or finite density. The \emph{generalized} Passarino-Veltman reduction can analyze the one-loop tensor Feynman integrals in a wide range of physical systems described by the relativistic QFTs at finite temperature and/or finite density, such as quark-gluon plasma in nuclear physics.