论文标题

表征具有高分辨率光谱法的最朦胧的亚北极螺旋体的前景

Prospects for Characterizing the Haziest Sub-Neptune Exoplanets with High Resolution Spectroscopy

论文作者

Hood, Callie E., Fortney, Jonathan J., Line, Michael R., Martin, Emily C., Morley, Caroline V., Birkby, Jayne L., Rustamkulov, Zafar, Lupu, Roxana E., Freedman, Richard S.

论文摘要

表征比地球大但小于海王星大的行星的观察结果导致在低光谱分辨率的情况下,由于危险或云,这些解释掩盖了光谱中的分子特征。但是,我们在这里表明,高分辨率光谱(r $ \ sim $ 25,000至100,000)使人们能够探测形成最强光谱线的岩心上方的这些大气中的区域。我们介绍了一套GJ1214B样行星套件的传输光谱模型,其厚度光化学危险覆盖了1-5 $μ$ m,该分辨率与当前和未来的基于地面的光谱图有关。此外,我们比较了互相关函数的效用,该函数通常与基于更正式的可能性方法一起使用,发现只有基于可能性的方法对雾糊状不透明度的存在敏感。我们计算了这些光谱的信号到噪声,包括易尿污染,以稳健地检测出许多分子,例如CO,CO $ _ {2} $,H $ _ {2} $ o,以及CH $ _ {4} $,以及HCN,以及HCN,例如HCN,以及诸如HCN的函数和范围的函数。 m频段中的光谱需要最低的s/n $ _ {res} $同时检测多个分子。 ch $ _ {4} $仅适用于最酷的型号($ t _ {\ rm {eff}}} = $ 412 K),并且仅在L频段中观察到。我们定量评估这些要求与当前和未来工具的可实现相比,表明具有地面高分辨率光谱的小酷世界的表征可以触及。

Observations to characterize planets larger than Earth but smaller than Neptune have led to largely inconclusive interpretations at low spectral resolution due to hazes or clouds that obscure molecular features in their spectra. However, here we show that high-resolution spectroscopy (R $\sim$ 25,000 to 100,000) enables one to probe the regions in these atmospheres above the clouds where the cores of the strongest spectral lines are formed. We present models of transmission spectra for a suite of GJ1214b-like planets with thick photochemical hazes covering 1 - 5 $μ$m at a range of resolutions relevant to current and future ground-based spectrographs. Furthermore, we compare the utility of the cross-correlation function that is typically used with a more formal likelihood-based approach, finding that only the likelihood based method is sensitive to the presence of haze opacity. We calculate the signal-to-noise of these spectra, including telluric contamination, required to robustly detect a host of molecules such as CO, CO$_{2}$, H$_{2}$O, and CH$_{4}$, and photochemical products like HCN, as a function of wavelength range and spectral resolution. Spectra in M band require the lowest S/N$_{res}$ to detect multiple molecules simultaneously. CH$_{4}$ is only observable for the coolest models ($T_{\rm{eff}} =$ 412 K) and only in the L band. We quantitatively assess how these requirements compare to what is achievable with current and future instruments, demonstrating that characterization of small cool worlds with ground-based high resolution spectroscopy is well within reach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源