论文标题

安格斯:对情感语音转变的人声粗糙度的实时操纵

ANGUS: Real-time manipulation of vocal roughness for emotional speech transformations

论文作者

Liuni, Marco, Ardaillon, Luc, Bonal, Louise, Seropian, Lou, Aucouturier, Jean-Julien

论文摘要

高度唤醒时人和动物发声所赋予的非线性声学特征的声音唤醒具有重要的交流功能,因为它表明诸如恐惧,痛苦或困扰之类的厌恶状态。在这项工作中,我们提出了一种计算效率,实时语音转换算法Angus,该算法使用振幅调制和时间域滤波来模拟粗糙度,这是在任意语音记录中的声音唤醒的重要组成部分。在一系列4项研究中,我们表明Angus允许对粗糙度的光谱特征进行参数控制,例如存在亚麻和噪声。 Angus将听众感知到的情感消极情绪增加到了可比的水平,即从最先进的艺术中的非实时分析/重新合成算法;听众无法区分机会级别的转换和未转化的声音;而安格斯(Angus)对动物的发声和乐器的声音具有类似的情感影响,而不是对人的发声。 Angus的实时实现可作为开源软件,用于实验情感和情感计算。

Vocal arousal, the non-linear acoustic features taken on by human and animal vocalizations when highly aroused, has an important communicative function because it signals aversive states such as fear, pain or distress. In this work, we present a computationally-efficient, real-time voice transformation algorithm, ANGUS, which uses amplitude modulation and time-domain filtering to simulate roughness, an important component of vocal arousal, in arbitrary voice recordings. In a series of 4 studies, we show that ANGUS allows parametric control over the spectral features of roughness like the presence of sub-harmonics and noise; that ANGUS increases the emotional negativity perceived by listeners, to a comparable level as a non-real-time analysis/resynthesis algorithm from the state-of-the-art; that listeners cannot distinguish transformed and non-transformed sounds above chance level; and that ANGUS has a similar emotional effect on animal vocalizations and musical instrument sounds than on human vocalizations. A real-time implementation of ANGUS is made available as open-source software, for use in experimental emotion reseach and affective computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源