论文标题

冲击反射中的粘性喷射和马赫茎分叉:实验和模拟

Viscous jetting and Mach stem bifurcation in shock reflections: experiments and simulations

论文作者

Lau-Chapdelaine, S. S. -M., Xiao, Q., Radulescu, M. I.

论文摘要

进行冲击反射实验,以研究前向喷射现象产生的大规模对流混合。实验以$θ_ {\ mathrm {w}} = 30^{\ circ} $的楔形角度执行,在氮气,丙烷 - 氧气和己烷中,带有入射冲击马赫数为$ m = 4 $。实验是通过赫克斯内的三分点反射的冲击分辨粘性模拟以$ m = 2.5 $至$ 6 $的赞美来称赞的。 Inviscid模拟在更广泛的参数范围内进行。 Reynolds的数字最高为$ re \ lyssim 10^3 $由模拟覆盖,雷诺数为$ re \ sim 10^5 $,由实验涵盖。研究表明,随着等粒子指数的降低,随着马赫数和雷诺数的增加,向前射击接近马赫茎,形成涡流,变形了冲击阵线,在某些情况下会分叉马赫茎。实验表明,涡旋中的开尔文 - 螺旋体不稳定性导致在低等化指数下的马赫茎后面的大规模对流混合($γ\ le 1.15 $)。在$ M $ -M $ -UM-$θ_ {\ Mathrm {w}} $ $γ$的相位空间中绘制了Inviscid模拟中Mach STEM分叉的限制(三重Mach-White反射)。发现没有发生分叉的最大等entropic指数约为1.3 $(在$θ_ {\ Mathrm {w}}} = 30^{\ circ} $)。这与不规则/规则爆炸细胞结构之间的边界非常匹配。

Shock reflection experiments are performed to study the large-scale convective mixing created by the forward jetting phenomenon. Experiments are performed at a wedge angle of $θ_{\mathrm{w}} = 30^{\circ}$ in nitrogen, propane-oxygen, and hexane with incident shock Mach numbers up to $M = 4$. Experiments are complimented by shock-resolved viscous simulations of triple point reflection in hexane for $M = 2.5$ to $6$. Inviscid simulations are performed over a wider range of parameters. Reynolds numbers up to $Re \lesssim 10^3$ are covered by simulations and Reynolds numbers of $Re \sim 10^5$ are covered by experiments. The study shows that as the isentropic exponent is lowered, and as the Mach number and Reynolds number are increased, the forward jet approaches the Mach stem, forms a vortex, deforms the shock front and in some cases bifurcates the Mach stem. Experiments show Kelvin-Helmholtz instabilities in the vortex cause large-scale convective mixing behind the Mach stem at low isentropic exponents ($γ\le 1.15$). The limits of Mach stem bifurcation (triple Mach-White reflection) in inviscid simulations are plotted in the phase space of $M$- $θ_{\mathrm{w}}$-$γ$. A maximum isentropic exponent of $γ\approx 1.3$ is found beyond which bifurcation does not occur (at $θ_{\mathrm{w}} = 30^{\circ}$). This closely matches the boundary between irregular/regular detonation cellular structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源