论文标题

在遥感中进行深度积极学习,以进行数据有效变化检测

Deep Active Learning in Remote Sensing for data efficient Change Detection

论文作者

Růžička, Vít, D'Aronco, Stefano, Wegner, Jan Dirk, Schindler, Konrad

论文摘要

我们在深度神经网络模型的背景下研究积极的学习,以进行变更检测和地图更新。主动学习是许多遥感任务的自然选择,包括检测局部表面变化:一方面变化很少见,另一方面,它们的外观各不相同且弥漫,因此很难提前收集代表性的训练。在主动学习环境中,一个从最小的培训示例开始,并逐步选择了用户注释并添加到培训集中的信息样本。因此,主动学习系统的核心组成部分是估计模型不确定性的机制,然后将其用于选择不确定的,内容丰富的样本。我们研究了不同的机制,可以根据明确或隐式模型集合的方差或熵在使用深网时捕获和量化这种不确定性。我们表明,主动学习成功地找到了信息丰富的样本并自动平衡训练分布,并与使用大型预通道的训练集的模型达到相同的性能,$ \ $ \ $ \ $ \ $ \ $ 99%。

We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are on the one hand rare and on the other hand their appearance is varied and diffuse, making it hard to collect a representative training set in advance. In the active learning setting, one starts from a minimal set of training examples and progressively chooses informative samples that are annotated by a user and added to the training set. Hence, a core component of an active learning system is a mechanism to estimate model uncertainty, which is then used to pick uncertain, informative samples. We study different mechanisms to capture and quantify this uncertainty when working with deep networks, based on the variance or entropy across explicit or implicit model ensembles. We show that active learning successfully finds highly informative samples and automatically balances the training distribution, and reaches the same performance as a model supervised with a large, pre-annotated training set, with $\approx$99% fewer annotated samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源