论文标题

通过间隙比统计数据探测量子多体系统的对称性

Probing symmetries of quantum many-body systems through gap ratio statistics

论文作者

Giraud, Olivier, Macé, Nicolas, Vernier, Eric, Alet, Fabien

论文摘要

连续能级之间间隙比的统计数据是一种广泛使用的工具,尤其是在多体物理学的背景下,以分别由随机矩阵和泊松统计的高斯集团分别描述了混乱和可混合系统。在这项工作中,我们将差距比分布p(r)的研究扩展到存在离散对称性的情况。这很重要,因为在某些情况下,将模型分为对称扇区可能是非常不切实际或不可能的,更不用说在不知道对称性的情况下。从高斯合奏中的推测的已知表达式开始,我们得出了由几个独立块组成的随机矩阵的分析性推测。我们对大型随机矩阵的模拟进行检查,显示出极好的一致性。然后,我们在多体物理学中介绍了大量应用,从量子时钟模型和任何链链到定期驱动的自旋系统。在所有这些模型中,可以通过研究光谱差距的研究来诊断(有时隐藏)对称性的存在,我们的方法为表征独立对称子空间的数量和大小提供了一种有效的方法。我们最终讨论了我们的分析对于文献中现有结果及其实际实用性的相关性,并指出了可能的未来应用和扩展。

The statistics of gap ratios between consecutive energy levels is a widely used tool, in particular in the context of many-body physics, to distinguish between chaotic and integrable systems, described respectively by Gaussian ensembles of random matrices and Poisson statistics. In this work we extend the study of the gap ratio distribution P(r) to the case where discrete symmetries are present. This is important, since in certain situations it may be very impractical, or impossible, to split the model into symmetry sectors, let alone in cases where the symmetry is not known in the first place. Starting from the known expressions for surmises in the Gaussian ensembles, we derive analytical surmises for random matrices comprised of several independent blocks. We check our formulae against simulations from large random matrices, showing excellent agreement. We then present a large set of applications in many-body physics, ranging from quantum clock models and anyonic chains to periodically-driven spin systems. In all these models the existence of a (sometimes hidden) symmetry can be diagnosed through the study of the spectral gap ratios, and our approach furnishes an efficient way to characterize the number and size of independent symmetry subspaces. We finally discuss the relevance of our analysis for existing results in the literature, as well as its practical usefulness, and point out possible future applications and extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源