论文标题
量子多体吸引子
Quantum many-body attractors
论文作者
论文摘要
自主发生时(即没有外部驾驶)的复杂动态通常与日常长度尺度和经典物理相关,例如活生物体。此动力学是\ emph {not}量子相干。相比之下,量子相干动力学被认为是简单的周期性振荡,尤其是自主时,例如自旋进动或随机量子波动。在微观长度尺度上结合自主复合物和量子相干动力学,可以使新型相干量子机在没有外部时间依赖性驾驶的情况下工作。由此激励,在这里,我们为系统提供了精确的理论条件,以在微观和宏观长度尺度上显示复杂的量子相干动力学,我们称为\ emph {动态量子代数线程}(d-qat)。由于D-QAT,我们的自主量子相干动力学对现实的缺陷(包括低掺杂障碍)是鲁棒的,并且存在通用初始状态,从而可以在实验中实现潜在的实现。我们举例说明了一个\ emph {旋转蕾丝}模型在结构上与磁性蓝石相似,并且某些最近实验实现了较长相干时间的大型单分子磁体。我们的工作打开了许多潜在应用的可能性,包括超密集的存储和操纵量子记忆,创建\ emph {giant}量子相干量子器或微观量子机制执行复杂的运动。
Complex dynamics when occurring autonomously, i.e. without external driving, is usually associated with everyday length scales and classical physics, e.g. living organisms. This dynamics is \emph{not} quantum coherent. Quantum coherent dynamics is, by contrast, assumed to be either simple periodic oscillation in particular when autonomous, e.g. spin precession, or random quantum fluctuations. Combining autonomous complex and quantum coherent dynamics on microscopic length-scales could allow for novel coherent quantum machines working without external time-dependent driving. Motivated by this, here we provide an exact theoretical condition for a system to display complex quantum coherent dynamics on both microscopic and macroscopic length scales that we call a \emph{dynamical quantum algebraic thread} (D-QAT). Due to D-QATs our autonomous quantum coherent dynamics is robust to realistic imperfections (including low-doped disorder) and present for generic initial states, allowing for potential realisations in experiments. We give an example of a \emph{spin lace} model structurally similar to magnetic azurite and certain recently experimentally realized large single-molecular magnets with long coherence times. Our work opens the possibility for many potential applications including ultra-dense storage and manipulation of quantum memories, creating \emph{giant} quantum coherent qubits, or microscopic quantum mechanism perform complicated motion.