论文标题

Prime K-tuples的一种变体,并应用于量子限制

A variation of the prime k-tuples conjecture with applications to quantum limits

论文作者

McGrath, Oliver

论文摘要

令$ \ MATHCAL {H}^{*} = \ {H_1,H_2,\ ldots \} $是整数的有序集。 We give sufficient conditions for the existence of increasing sequences of natural numbers $a_j$ and $n_k$ such that $n_k+h_{a_j}$ is a sum of two squares for every $k\geq 1$ and $1\leq j\leq k.$ Our method uses a novel modification of the Maynard-Tao sieve together with a second moment estimate.作为我们结果的一种特殊情况,我们根据D. jakobson提出了一个猜想,这对Flat Tori的量子限制具有几个影响。

Let $\mathcal{H}^{*}=\{h_1,h_2,\ldots\}$ be an ordered set of integers. We give sufficient conditions for the existence of increasing sequences of natural numbers $a_j$ and $n_k$ such that $n_k+h_{a_j}$ is a sum of two squares for every $k\geq 1$ and $1\leq j\leq k.$ Our method uses a novel modification of the Maynard-Tao sieve together with a second moment estimate. As a special case of our result, we deduce a conjecture due to D.~Jakobson which has several implications for quantum limits on flat tori.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源