论文标题

随机马尔可夫梯度下降和训练低位神经网络

Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks

论文作者

Ashbrock, Jonathan, Powell, Alexander M.

论文摘要

现代神经网络的巨大规模激发了人们对神经网络量化的近期兴趣。我们引入了随机马尔可夫梯度下降(SMGD),这是一种适用于训练量化神经网络的离散优化方法。 SMGD算法设计用于在训练过程中高度限制内存的设置。我们提供算法性能的理论保证以及鼓励数值结果。

The massive size of modern neural networks has motivated substantial recent interest in neural network quantization. We introduce Stochastic Markov Gradient Descent (SMGD), a discrete optimization method applicable to training quantized neural networks. The SMGD algorithm is designed for settings where memory is highly constrained during training. We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源