论文标题

标签脱钩框架显着对象检测

Label Decoupling Framework for Salient Object Detection

论文作者

Wei, Jun, Wang, Shuhui, Wu, Zhe, Su, Chi, Huang, Qingming, Tian, Qi

论文摘要

为了获得更准确的显着性图,最近的方法主要集中于从完全卷积网络(FCN)中汇总多层次功能,并将边缘信息作为辅助监督引入。尽管已经取得了显着的进步,但我们观察到像素越接近边缘,因此要预测的困难越困难,因为边缘像素的分布非常不平衡。为了解决此问题,我们提出了一个标签解耦框架(LDF),该框架由标签解耦(LD)过程和功能交互网络(FIN)组成。 LD明确将原始显着性图分解为身体图和细节图,其中身体图集中在物体的中心区域和细节图的重点关注边缘周围的区域。详细信息效果更好,因为它涉及的像素比传统的边缘监督更多。与显着图不同的是,人体图丢弃了边缘像素,并且仅注意中心区域。这成功避免了训练期间对边缘像素的分心。因此,我们在FIN中使用两个分支来处理身体图和细节图。特征相互作用(FI)旨在融合两个互补分支以预测显着图,然后将其再次用于精炼两个分支。这种迭代的改进有助于学习更好的表示形式和更精确的显着性图。六个基准数据集的全面实验表明,在不同评估指标上,LDF优于最先进的方法。

To get more accurate saliency maps, recent methods mainly focus on aggregating multi-level features from fully convolutional network (FCN) and introducing edge information as auxiliary supervision. Though remarkable progress has been achieved, we observe that the closer the pixel is to the edge, the more difficult it is to be predicted, because edge pixels have a very imbalance distribution. To address this problem, we propose a label decoupling framework (LDF) which consists of a label decoupling (LD) procedure and a feature interaction network (FIN). LD explicitly decomposes the original saliency map into body map and detail map, where body map concentrates on center areas of objects and detail map focuses on regions around edges. Detail map works better because it involves much more pixels than traditional edge supervision. Different from saliency map, body map discards edge pixels and only pays attention to center areas. This successfully avoids the distraction from edge pixels during training. Therefore, we employ two branches in FIN to deal with body map and detail map respectively. Feature interaction (FI) is designed to fuse the two complementary branches to predict the saliency map, which is then used to refine the two branches again. This iterative refinement is helpful for learning better representations and more precise saliency maps. Comprehensive experiments on six benchmark datasets demonstrate that LDF outperforms state-of-the-art approaches on different evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源