论文标题
具有3D离散小波变换和马尔可夫随机场的偏光SAR图像语义分割
Polarimetric SAR Image Semantic Segmentation with 3D Discrete Wavelet Transform and Markov Random Field
论文作者
论文摘要
极化合成孔径雷达(POLSAR)图像分割目前在遥感应用的图像处理中非常重要。但是,由于两个主要原因,这是一项具有挑战性的任务。首先,由于较高的注释成本,标签信息很难获取。其次,嵌入Polsar成像过程中的斑点效应显着降低了分割性能。为了解决这两个问题,我们在本文中提出了上下文的POLSAR图像语义分割方法。与新定义的通道一致的特征集作为输入,三维离散小波变换(3D-DWT)技术可用于提取歧视性多尺度功能,从而对示意噪声强大。然后进一步应用马尔可夫随机场(MRF),以在分割期间在空间上实施平滑度。通过首次同时利用3D-DWT功能和MRF先验,在分割过程中,上下文信息已完全集成,以确保准确且平滑的分割。为了证明该方法的有效性,我们对三个实际基准Polsar图像数据集进行了广泛的实验。实验结果表明,使用最少数量的标记像素,该提出的方法实现了有希望的分割准确性和可取的空间一致性。
Polarimetric synthetic aperture radar (PolSAR) image segmentation is currently of great importance in image processing for remote sensing applications. However, it is a challenging task due to two main reasons. Firstly, the label information is difficult to acquire due to high annotation costs. Secondly, the speckle effect embedded in the PolSAR imaging process remarkably degrades the segmentation performance. To address these two issues, we present a contextual PolSAR image semantic segmentation method in this paper.With a newly defined channelwise consistent feature set as input, the three-dimensional discrete wavelet transform (3D-DWT) technique is employed to extract discriminative multi-scale features that are robust to speckle noise. Then Markov random field (MRF) is further applied to enforce label smoothness spatially during segmentation. By simultaneously utilizing 3D-DWT features and MRF priors for the first time, contextual information is fully integrated during the segmentation to ensure accurate and smooth segmentation. To demonstrate the effectiveness of the proposed method, we conduct extensive experiments on three real benchmark PolSAR image data sets. Experimental results indicate that the proposed method achieves promising segmentation accuracy and preferable spatial consistency using a minimal number of labeled pixels.