论文标题
单一八元的离散力学
Discrete mechanics on unitary octonions
论文作者
论文摘要
在本文中,我们将离散的Lagrangian和Hamiltonian力学推广到谎言组上,以概括谎言群体(平滑环路)。这表明,关联假设对于力学并不重要,并开辟了新的观点。作为一个有效的例子,我们获得了单一八元元素的离散拉格朗日和哈密顿式力学。
In this article we generalize the discrete Lagrangian and Hamiltonian mechanics on Lie groups to non-associative objects generalizing Lie groups (smooth loops). This shows that the associativity assumption is not crucial for mechanics and opens new perspectives. As a working example we obtain the discrete Lagrangian and Hamiltonian mechanics on unitary octonions.