论文标题
塔塔和基本嵌入托拉尔相对双曲的群体
Towers and elementary embeddings in toral relatively hyperbolic groups
论文作者
论文摘要
在一系列非凡的论文中,Zlil Sela使用他称为塔的几何结构对自由组和无扭转双曲线组的一阶理论进行了分类。 ChloéPerin后来证明,如果$ h $是无扭转双曲线组$ g $的基本嵌入式亚组(或基本子模型),则$ g $是$ h $的塔楼。我们证明了使用JSJ和缩短技术对Perin的结果概括。
In a remarkable series of papers, Zlil Sela classified the first-order theories of free groups and torsion-free hyperbolic groups using geometric structures he called towers. It was later proved by Chloé Perin that if $H$ is an elementarily embedded subgroup (or elementary submodel) of a torsion-free hyperbolic group $G$, then $G$ is a tower over $H$. We prove a generalization of Perin's result to toral relatively hyperbolic groups using JSJ and shortening techniques.