论文标题

在生理信号中使用深层网络进行科学发现

Using Deep Networks for Scientific Discovery in Physiological Signals

论文作者

Beer, Tom, Eini-Porat, Bar, Goodfellow, Sebastian, Eytan, Danny, Shalit, Uri

论文摘要

深度神经网络(DNN)在生理信号的分类方面取得了显着成功。在这项研究中,我们提出了一种检查DNN的性能在多大程度上取决于重新发现信号的现有特征而不是发现真正的新功能的方法。此外,我们提供了一种新颖的方法,可以从网络的假设空间中“删除”手工设计的特征,从而迫使它尝试并学习与已知探索不同的表示形式,作为一种科学探索的方法。然后,我们基于可解释性领域的现有工作,特别是类激活图,以尝试推断网络学到的新功能。我们使用ECG和EEG信号证明了这种方法。关于ECG信号,我们表明,对于对心房颤动进行分类的特定任务,DNN可能会重新发现已知特征。我们还可以通过选择性地删除一些ECG功能并“重新发现”它们来展示如何使用我们的方法来发现新功能。我们进一步研究如何将我们的方法用作检查科学假设的工具。我们通过研究眼动运动在从脑电图分类中的重要性来模拟这种情况。我们表明,我们的工具可以通过在数据中隐藏的数据中的光线模式来成功关注研究人员的注意力。

Deep neural networks (DNN) have shown remarkable success in the classification of physiological signals. In this study we propose a method for examining to what extent does a DNN's performance rely on rediscovering existing features of the signals, as opposed to discovering genuinely new features. Moreover, we offer a novel method of "removing" a hand-engineered feature from the network's hypothesis space, thus forcing it to try and learn representations which are different from known ones, as a method of scientific exploration. We then build on existing work in the field of interpretability, specifically class activation maps, to try and infer what new features the network has learned. We demonstrate this approach using ECG and EEG signals. With respect to ECG signals we show that for the specific task of classifying atrial fibrillation, DNNs are likely rediscovering known features. We also show how our method could be used to discover new features, by selectively removing some ECG features and "rediscovering" them. We further examine how could our method be used as a tool for examining scientific hypotheses. We simulate this scenario by looking into the importance of eye movements in classifying sleep from EEG. We show that our tool can successfully focus a researcher's attention by bringing to light patterns in the data that would be hidden otherwise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源