论文标题

沙利文代数的Hochschild协同学和歧管之间的映射空间

Hochschild cohomology of Sullivan algebras and mapping spaces between manifolds

论文作者

Gatsinzi, J. -B.

论文摘要

令$ e:n^n \ rightarrow m $ $是嵌入紧凑的歧管$ m $中的嵌入。 We study the relationship between the homology of the free loop space $LM$ on $M$ and of the space $L_NM$ of loops of $M$ based in $N$ and define a shriek map $ e_{!}: H_*( LM, \mathbb{Q}) \rightarrow H_*( L_NM, \mathbb{Q})$ using Hochschild cohomology and研究其特性。 We also extend a result of Félix on the injectivity of the induced map $ \mathrm{aut}_1M \rightarrow \mathrm{map}(N, M; f ) $ on rational homotopy groups when $M$ and $N$ have the same dimension and $ f: N\rightarrow M $ is a map of non zero degree.

Let $e: N^n \rightarrow M^m $ be an embedding into a compact manifold $M$. We study the relationship between the homology of the free loop space $LM$ on $M$ and of the space $L_NM$ of loops of $M$ based in $N$ and define a shriek map $ e_{!}: H_*( LM, \mathbb{Q}) \rightarrow H_*( L_NM, \mathbb{Q})$ using Hochschild cohomology and study its properties. We also extend a result of Félix on the injectivity of the induced map $ \mathrm{aut}_1M \rightarrow \mathrm{map}(N, M; f ) $ on rational homotopy groups when $M$ and $N$ have the same dimension and $ f: N\rightarrow M $ is a map of non zero degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源