论文标题
自旋切割和重塑电子带结构的自下而上的设计自旋耦合抗铁磁体:基于增强多物
Bottom-up design of spin-split and reshaped electronic band structures in spin-orbit-coupling free antiferromagnets: Procedure on the basis of augmented multipoles
论文作者
论文摘要
我们提出了具有固有的自旋和动量依赖的电子带结构的有效微观设计程序,在自旋轨道偶联的游离反铁磁铁中。我们的自下而上的设计方法可以创建所需的自旋切割和重塑带结构,这可能会导致进一步发现实用的自旋轨道偶联材料,这些材料表现出巨大的旋转依赖性和/或非偏置运输,磁电磁和弹性响应,这是这种带状结构的结果。我们建立了一个系统的指南,以使用两个极性多极的自由度,电气和磁性磁带多极程,构建自旋轨道偶联自由偶联系统中的对称/反对称自旋分裂和反对自旋的独立带结构。两个极性多物描述了跳跃哈密顿的任意自由度,其在集群中的现场和异地自由度分别描述为群集和键多物,而簇之间连接的另一个自由度表示为动量多数。通过使用这些多极描述,我们阐明了简单的显微镜条件,以实现磁有序状态的固有带变形:当群集和键多物包含相同的多尔对称性时,在共线磁体中实现了对称性自旋分裂。当存在键型磁性环磁多多极时,反对称自旋分裂发生在非连续性抗fiferromagnets中。此外,在非coplanar抗fiferromagnets中实现了带自旋退化的抗对称带变形。我们举例说明了三个晶格系统,以证明磁顺序下的带状变形。根据提议的程序,我们列出了根据MagnData,磁性结构数据库显示内在带变形的各种候选材料。
We propose an efficient microscopic design procedure of electronic band structures having intrinsic spin and momentum dependences in spin-orbit-coupling free antiferromagnets. Our bottom-up design approach to creating desired spin-split and reshaped band structures could result in further findings of practical spin-orbit-coupling free materials exhibiting a giant spin-dependent and/or nonreciprocal transport, magneto-electric and elastic responses as a consequence of such band structures. We establish a systematic guideline to construct symmetric/antisymmetric spin-split and antisymmetrically deformed spin-independent band structures in spin-orbit-coupling free systems by using two polar multipole degrees of freedom, electric and magnetic toroidal multipoles. The two polar multipoles describe arbitrary degrees of freedom in the hopping Hamiltonian, whose onsite and offsite degrees of freedom in a cluster are described as the cluster and bond multipoles, respectively, and another degree of freedom connecting between clusters is expressed as momentum multipoles. By using these multipole descriptions, we elucidate simple microscopic conditions to realize intrinsic band deformations in magnetically ordered states: The symmetric spin splitting is realized in collinear magnets when cluster and bond multipoles contain the same symmetry of multipoles. The antisymmetric spin splitting occurs in noncollinear antiferromagnets when a bond-type magnetic toroidal multipole is present. Furthermore, the antisymmetric band deformation with spin degeneracy is realized in noncoplanar antiferromagnets. We exemplify three lattice systems in order to demonstrate the band deformations under the magnetic ordering. On the basis of the proposed procedure, we list up various candidate materials showing intrinsic band deformations in accordance with MAGNDATA, magnetic structures database.