论文标题

深度变异网络朝着盲图修复

Deep Variational Network Toward Blind Image Restoration

论文作者

Yue, Zongsheng, Yong, Hongwei, Zhao, Qian, Zhang, Lei, Meng, Deyu, Wong, Kwan-Yee K.

论文摘要

盲图修复(IR)是计算机视觉中常见但又具有挑战性的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同的方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图修复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描述了降解过程。在此提出的模型中,由像素的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D.在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变分推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理降解估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一个红外过程。对两项典型的盲ID任务(即图像降解和超分辨率)进行的实验表明,所提出的方法比当前最新的方法实现了卓越的性能。

Blind image restoration (IR) is a common yet challenging problem in computer vision. Classical model-based methods and recent deep learning (DL)-based methods represent two different methodologies for this problem, each with their own merits and drawbacks. In this paper, we propose a novel blind image restoration method, aiming to integrate both the advantages of them. Specifically, we construct a general Bayesian generative model for the blind IR, which explicitly depicts the degradation process. In this proposed model, a pixel-wise non-i.i.d. Gaussian distribution is employed to fit the image noise. It is with more flexibility than the simple i.i.d. Gaussian or Laplacian distributions as adopted in most of conventional methods, so as to handle more complicated noise types contained in the image degradation. To solve the model, we design a variational inference algorithm where all the expected posteriori distributions are parameterized as deep neural networks to increase their model capability. Notably, such an inference algorithm induces a unified framework to jointly deal with the tasks of degradation estimation and image restoration. Further, the degradation information estimated in the former task is utilized to guide the latter IR process. Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源