论文标题

各向异性作为诊断测试,用于整数的不同张量网络波形和半数旋转kitaev kitaev量子自旋液体

Anisotropy as a diagnostic test for distinct tensor network wavefunctions of integer and half-integer spin Kitaev quantum spin liquids

论文作者

Lee, Hyun-Yong, Suzuki, Takafumi, Kim, Yong Baek, Kawashima, Naoki

论文摘要

对比量子磁体与整数和半整数旋转力矩的基态是多体量子干扰效应的表现。在这项工作中,我们研究了在蜂窝晶格上Kitaev模型的框架中整数和半含量旋转量子自旋液体的独特性质。与自旋1/2系统的众所周知的量子自旋液溶液相比,具有任意自旋量子数的模型无法解决。我们使用张量网络波函数进行整数和半级旋转量子自旋液态态,以揭示这些状态之间的重要差异。我们发现,整数和半级旋转量子自旋液体的张量网络波函数的不同符号结构负责在空间各向异性极限中完全不同的基态。因此,空间各向异性将是一个有用的诊断测试,用于区分这些量子自旋液态,无论是在数值计算还是在真实材料上的实验中。我们通过广泛的数字来支持这一发现,包括张量网络,DMRG和精确的对角度计算。

Contrasting ground states of quantum magnets with the integer and half-integer spin moments are the manifestation of many-body quantum interference effects. In this work, we investigate the distinct nature of the integer and half-integer spin quantum spin liquids in the framework of the Kitaev's model on the honeycomb lattice. The models with arbitrary spin quantum numbers are not exactly solvable in contrast to the well-known quantum spin liquid solution of the spin-1/2 system. We use the tensor network wavefunctions for the integer and half-integer spin quantum spin liquid states to unveil the important difference between these states. We find that the distinct sign structures of the tensor network wavefunction for the integer and half-integer spin quantum spin liquids are responsible for completely different ground states in the spatially anisotropic limit. Hence the spatial anisotropy would be a useful diagnostic test for distinguishing these quantum spin liquid states, both in the numerical computations and experiments on real materials. We support this discovery via extensive numerics including the tensor network, DMRG, and exact diagonalization computations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源