论文标题

图像着色:调查和数据集

Image Colorization: A Survey and Dataset

论文作者

Anwar, Saeed, Tahir, Muhammad, Li, Chongyi, Mian, Ajmal, Khan, Fahad Shahbaz, Muzaffar, Abdul Wahab

论文摘要

图像着色估计灰度图像或视频帧的RGB颜色,以提高其美学和感知质量。在过去的十年中,用于图像着色的深度学习技术已经显着发展,需要对这些技术进行系统的调查和基准测试。本文对最新的基于深度学习的图像着色技术进行了全面调查,描述了它们的基本块体系结构,输入,优化者,损失功能,培训方案,培训数据,培训数据等。它将现有的着色技术分为七个类别,并讨论了诸如Benchmark数据集合和评估的重要因素。我们强调了现有数据集的局限性,并引入了一个针对着色的新数据集。我们使用现有数据集和我们提出的数据集对现有图像着色方法进行了广泛的实验评估。最后,我们讨论了现有方法的局限性,并建议对深层图像着色的这个快速发展的主题推荐可能的解决方案和未来的研究方向。用于评估的数据集和代码可在https://github.com/saeed-anwar/colorsurvey上公开获得。

Image colorization estimates RGB colors for grayscale images or video frames to improve their aesthetic and perceptual quality. Over the last decade, deep learning techniques for image colorization have significantly progressed, necessitating a systematic survey and benchmarking of these techniques. This article presents a comprehensive survey of recent state-of-the-art deep learning-based image colorization techniques, describing their fundamental block architectures, inputs, optimizers, loss functions, training protocols, training data, etc. It categorizes the existing colorization techniques into seven classes and discusses important factors governing their performance, such as benchmark datasets and evaluation metrics. We highlight the limitations of existing datasets and introduce a new dataset specific to colorization. We perform an extensive experimental evaluation of existing image colorization methods using both existing datasets and our proposed one. Finally, we discuss the limitations of existing methods and recommend possible solutions and future research directions for this rapidly evolving topic of deep image colorization. The dataset and codes for evaluation are publicly available at https://github.com/saeed-anwar/ColorSurvey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源