论文标题

高斯过程回归的可变选择,通过稀疏投影

Variable selection for Gaussian process regression through a sparse projection

论文作者

Park, Chiwoo, Borth, David J., Wilson, Nicholas S., Hunter, Chad N.

论文摘要

本文提出了一种与高斯流程(GP)回归集成的新变量选择方法。我们考虑输入变量的稀疏投影和一个依赖于投影特征之间欧几里得距离的一般固定协方差模型。稀疏投影矩阵被认为是未知参数。我们提出了一种具有嵌入式梯度下降步骤的前阶段方法,以基于非convex边缘可能性函数的最大化和其他协方差参数的参数,并提供了具有凹的稀疏性惩罚,并提供了算法的某些收敛性。所提出的模型涵盖了比现有的自动相关性确定方法更广泛的固定协方差函数,而解决方案方法在计算上比现有的MCMC采样程序对自动相关性参数估计的现有MCMC采样程序更为可行。评估了大量模拟方案的方法。通过模拟研究评估了调谐参数的选择和参数估计的准确性。与某些选择的基准方法进行比较,所提出的方法在变量选择方面提供了更好的准确性。它应用于识别影响金属合金腐蚀的环境因素的重要问题。

This paper presents a new variable selection approach integrated with Gaussian process (GP) regression. We consider a sparse projection of input variables and a general stationary covariance model that depends on the Euclidean distance between the projected features. The sparse projection matrix is considered as an unknown parameter. We propose a forward stagewise approach with embedded gradient descent steps to co-optimize the parameter with other covariance parameters based on the maximization of a non-convex marginal likelihood function with a concave sparsity penalty, and some convergence properties of the algorithm are provided. The proposed model covers a broader class of stationary covariance functions than the existing automatic relevance determination approaches, and the solution approach is more computationally feasible than the existing MCMC sampling procedures for the automatic relevance parameter estimation with a sparsity prior. The approach is evaluated for a large number of simulated scenarios. The choice of tuning parameters and the accuracy of the parameter estimation are evaluated with the simulation study. In the comparison to some chosen benchmark approaches, the proposed approach has provided a better accuracy in the variable selection. It is applied to an important problem of identifying environmental factors that affect an atmospheric corrosion of metal alloys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源