论文标题

填充随机周期

Filling random cycles

论文作者

Manin, Fedor

论文摘要

我们计算了单位立方体和球体中某些随机Lipschitz循环的平均案例填充体积的渐近行为。例如,我们估计了米利特(Millett)首先研究的随机结模型的Seifert表面的最小面积。这是对组合概率的经典ajtai-komlós--tusnády匹配定理的概括。作者希望应用于随机链接的拓扑,球之间的随机图以及其他随机几何对象的模型。

We compute the asymptotic behavior of the average-case filling volume for certain models of random Lipschitz cycles in the unit cube and sphere. For example, we estimate the minimal area of a Seifert surface for a model of random knots first studied by Millett. This is a generalization of the classical Ajtai--Komlós--Tusnády optimal matching theorem from combinatorial probability. The author hopes for applications to the topology of random links, random maps between spheres, and other models of random geometric objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源