论文标题
填充随机周期
Filling random cycles
论文作者
论文摘要
我们计算了单位立方体和球体中某些随机Lipschitz循环的平均案例填充体积的渐近行为。例如,我们估计了米利特(Millett)首先研究的随机结模型的Seifert表面的最小面积。这是对组合概率的经典ajtai-komlós--tusnády匹配定理的概括。作者希望应用于随机链接的拓扑,球之间的随机图以及其他随机几何对象的模型。
We compute the asymptotic behavior of the average-case filling volume for certain models of random Lipschitz cycles in the unit cube and sphere. For example, we estimate the minimal area of a Seifert surface for a model of random knots first studied by Millett. This is a generalization of the classical Ajtai--Komlós--Tusnády optimal matching theorem from combinatorial probability. The author hopes for applications to the topology of random links, random maps between spheres, and other models of random geometric objects.