论文标题

数据驱动的航空航天工程:通过机器学习对行业进行重塑

Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning

论文作者

Brunton, Steven L., Kutz, J. Nathan, Manohar, Krithika, Aravkin, Aleksandr Y., Morgansen, Kristi, Klemisch, Jennifer, Goebel, Nicholas, Buttrick, James, Poskin, Jeffrey, Blom-Schieber, Agnes, Hogan, Thomas, McDonald, Darren

论文摘要

数据科学,尤其是机器学习,正在迅速改变科学和工业景观。航空航天行业有望利用大数据和机器学习,擅长于解决飞机设计和制造中出现的多目标,有限的优化问题的类型。实际上,机器学习中的新兴方法可以被视为数据驱动的优化技术,非常适合高维,非凸和受约束,多目标优化问题,并且随着数据量的增加而改善。在这篇综述中,我们将探讨将数据驱动的科学和工程整合到航空航天行业的机遇和挑战。重要的是,我们将重点关注对安全至关重要应用的可解释,可解释,可解释和可认证的机器学习技术的关键需求。这篇审查将包括回顾展,对当前最新的评估以及路线图。在航空航天设计,制造,验证,验证和服务的关键挑战的背景下,将探索最近的算法和技术趋势。此外,我们将通过航空航天行业的几个案例研究探索这一景观。该文档是UW与波音之间密切合​​作的结果,以总结过去的努力并概述未来的机会。

Data science, and machine learning in particular, is rapidly transforming the scientific and industrial landscapes. The aerospace industry is poised to capitalize on big data and machine learning, which excels at solving the types of multi-objective, constrained optimization problems that arise in aircraft design and manufacturing. Indeed, emerging methods in machine learning may be thought of as data-driven optimization techniques that are ideal for high-dimensional, non-convex, and constrained, multi-objective optimization problems, and that improve with increasing volumes of data. In this review, we will explore the opportunities and challenges of integrating data-driven science and engineering into the aerospace industry. Importantly, we will focus on the critical need for interpretable, generalizeable, explainable, and certifiable machine learning techniques for safety-critical applications. This review will include a retrospective, an assessment of the current state-of-the-art, and a roadmap looking forward. Recent algorithmic and technological trends will be explored in the context of critical challenges in aerospace design, manufacturing, verification, validation, and services. In addition, we will explore this landscape through several case studies in the aerospace industry. This document is the result of close collaboration between UW and Boeing to summarize past efforts and outline future opportunities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源