论文标题
无内存的工人任务分配带有多层次开关成本
Memoryless Worker-Task Assignment with Polylogarithmic Switching Cost
论文作者
论文摘要
我们研究将无内存工人分配到具有动态需求的任务的基本问题。给定一组$ w $工人和$ | t | = w $ task of $ w $ subseteq [t] $ tasks $ t | = w $ tasks,一个无内存的工作者任务函数是任何功能$ ϕ $,将工人$ [w]分配给任务$ t $仅基于当前值的$ t $的$ t $。如果对于每个任务$ t $,则分配功能$ ϕ $最多最多具有$ k $,将$ t $的内容更改为一个任务,将$ t $的内容更改为$ K $ Worker分配。无内存工人任务分配的目标是构建最小的切换成本的分配功能。 在过去的工作中,确定最佳切换成本的问题已被提出为一个悬而未决的问题。没有已知的子线性上限,经过相当大的努力,最著名的下限剩余4(ICALP 2020)。 我们表明,有可能达到多层次开关成本。我们通过概率方法提供了一个构造,该方法可以实现开关成本$ o(\ log w \ log(wt))$和一个明确的结构,使开关成本成本$ \ operatatorName {polylog}(wt)$。我们还证明了转换成本的超稳定性下限:我们证明,对于任何$ W $的值,最佳切换成本为$ W $的$ t $。因此,不可能实现严格地将其作为$ W $的函数的转换成本。 最后,我们提出了工作任务分配问题的应用于公制嵌入问题。特别是,我们使用结果将稀疏二进制向量嵌入的第一个低衰减嵌入到低维锤式空间中。
We study the basic problem of assigning memoryless workers to tasks with dynamically changing demands. Given a set of $w$ workers and a multiset $T \subseteq[t]$ of $|T|=w$ tasks, a memoryless worker-task assignment function is any function $ϕ$ that assigns the workers $[w]$ to the tasks $T$ based only on the current value of $T$. The assignment function $ϕ$ is said to have switching cost at most $k$ if, for every task multiset $T$, changing the contents of $T$ by one task changes $ϕ(T)$ by at most $k$ worker assignments. The goal of memoryless worker task assignment is to construct an assignment function with the smallest possible switching cost. In past work, the problem of determining the optimal switching cost has been posed as an open question. There are no known sub-linear upper bounds, and after considerable effort, the best known lower bound remains 4 (ICALP 2020). We show that it is possible to achieve polylogarithmic switching cost. We give a construction via the probabilistic method that achieves switching cost $O(\log w \log (wt))$ and an explicit construction that achieves switching cost $\operatorname{polylog} (wt)$. We also prove a super-constant lower bound on switching cost: we show that for any value of $w$, there exists a value of $t$ for which the optimal switching cost is $w$. Thus it is not possible to achieve a switching cost that is sublinear strictly as a function of $w$. Finally, we present an application of the worker-task assignment problem to a metric embeddings problem. In particular, we use our results to give the first low-distortion embedding from sparse binary vectors into low-dimensional Hamming space.