论文标题
使用Fokker-Planck方程和物理信息的神经网络从离散的粒子观察中求解反随机问题
Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker-Planck Equation and Physics-informed Neural Networks
论文作者
论文摘要
管理概率密度函数演变(PDF)演变的Fokker-Planck(FP)方程适用于许多学科,但需要为每种情况的系数规范,这可以是时空的函数,而不仅仅是常数,因此需要开发数据驱动的模型方法。当可用的数据直接在PDF上时,就存在可用于推断系数的反问题的方法,从而确定FP方程并随后获得其解决方案。在此,我们解决了一个更现实的方案,其中仅在几个时间内对粒子位置上的位置进行了稀疏的数据,即使在现有方法(例如内核估计算法)中,即使在那些时间也不足以直接构建PDF。为此,我们开发了一个基于物理信息的神经网络(PINN)的通用框架,该框架使用Kullback-Leibler Divergence引入了新的损失函数,以将随机样品与FP方程联系起来,同时学习方程并始终推断多维PDF。特别是,我们考虑了两种类型的反问题,即fp方程已知但初始PDF的I型I型,并且II型II,除了未知的初始PDF外,漂移和扩散项也未知。在这两种情况下,我们都会研究布朗尼或征收噪声或两者组合的问题。我们在一维情况(1D)中详细介绍了新的PINN框架,但我们还提供了最多5D的结果,表明我们可以始终同时推断FP方程和}动力学,并且仅使用很少的离散观察到颗粒的粒子,同时同时使用高精度。
The Fokker-Planck (FP) equation governing the evolution of the probability density function (PDF) is applicable to many disciplines but it requires specification of the coefficients for each case, which can be functions of space-time and not just constants, hence requiring the development of a data-driven modeling approach. When the data available is directly on the PDF, then there exist methods for inverse problems that can be employed to infer the coefficients and thus determine the FP equation and subsequently obtain its solution. Herein, we address a more realistic scenario, where only sparse data are given on the particles' positions at a few time instants, which are not sufficient to accurately construct directly the PDF even at those times from existing methods, e.g., kernel estimation algorithms. To this end, we develop a general framework based on physics-informed neural networks (PINNs) that introduces a new loss function using the Kullback-Leibler divergence to connect the stochastic samples with the FP equation, to simultaneously learn the equation and infer the multi-dimensional PDF at all times. In particular, we consider two types of inverse problems, type I where the FP equation is known but the initial PDF is unknown, and type II in which, in addition to unknown initial PDF, the drift and diffusion terms are also unknown. In both cases, we investigate problems with either Brownian or Levy noise or a combination of both. We demonstrate the new PINN framework in detail in the one-dimensional case (1D) but we also provide results for up to 5D demonstrating that we can infer both the FP equation and} dynamics simultaneously at all times with high accuracy using only very few discrete observations of the particles.