论文标题

与线性规范转换及其本征态相关的不变二次操作员

Invariant quadratic operators associated with Linear Canonical Transformations and their eigenstates

论文作者

Ranaivoson, Ravo Tokiniaina, Andriambololona, Raoelina, Rakotoson, Hanitriarivo, Ravelonjato, Manjakamanana Rivo Herivola

论文摘要

这项工作的主要目的是确定与线性典型转换(LCT)相关的不变二次操作员,这些转换(LCT)可以在物理学中起重要作用。 LCT在许多领域都被考虑。在量子理论中,可以通过线性变换来识别它们,从而使规范的换向关系(CCR)保持不变。在这项工作中,考虑了对应于普通伪 - 欧几里得空间的LCT,并与量子理论的相空间表示相关。首先,针对单二维情况进行明确计算,以识别相应的LCT不变二次操作员,然后推导获得的结果的多维概括。还确定了这些操作员的特征状态。第一种LCT不变的操作员是坐标和动量运算符的二阶多项式,并且是减少动量分散算子的概括。该多项式的系数取决于坐标和动量运算符本身的平均值和统计差异。结果表明,这些统计差异可以与热力学变量有关。还确定了另外两个可以视为某些Quasipartciles的数字运算符的LCT不变的二次操作员:第一个是Bosonic类型准粒子的数字运算符,第二个是Fermionic类型对应的。该费米子LCT不变的二次操作员与LCT的自旋表示直接相关。在五二维理论的情况下,明确表明该操作员的本征态可以被视为基本费米子的基本量子状态。与粒子物理的标准模型兼容的基本费米子的分类是根据这些状态的分类建立的。

The main purpose of this work is to identify invariant quadratic operators associated with Linear Canonical Transformations (LCTs) which could play important roles in physics. LCTs are considered in many fields. In quantum theory, they can be identified with linear transformations which keep invariant the Canonical Commutation Relations (CCRs). In this work, LCTs corresponding to a general pseudo-Euclidian space are considered and related to a phase space representation of quantum theory. Explicit calculations are firstly performed for the monodimensional case to identify the corresponding LCT-invariant quadratic operators then multidimensional generalizations of the obtained results are deduced. The eigenstates of these operators are also identified. A first kind of LCT-invariant operator is a second order polynomial of the coordinates and momenta operators and is a generalization of reduced momentum dispersion operator. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of the coordinates and momenta operators themselves. It is shown that these statistical variances-covariances can be related with thermodynamic variables. Two other LCT-invariant quadratic operators, which can be considered as the number operators of some quasipartciles, are also identified: the first one is a number operator of bosonic type quasiparticles and the second one corresponds to fermionic type. This fermionic LCT-invariant quadratic operator is directly related to a spin representation of LCTs. It is shown explicitly, in the case of a pentadimensional theory, that the eigenstates of this operator can be considered as basic quantum states of elementary fermions. A classification of the fundamental fermions, compatible with the Standard model of particle physics, is established from a classification of these states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源