论文标题
黑森州的罚款:无监督的分解的弱者
The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement
论文作者
论文摘要
深层生成模型的现有分离方法依赖于手工挑选的先验和基于复杂的编码器架构。在本文中,我们提出了Hessian罚款,这是一个简单的正则化项,鼓励生成模型的Hessian关于其对角线。我们基于Hutchinson的估计量引入了该术语的模型无关,无偏的随机近似,以在训练过程中有效地计算其。我们的方法可以应用于只有几行代码的各种深层发电机。我们表明,使用Hessian罚款的培训通常会导致轴对准的分离,而在几个数据集上应用于Progan时,会在潜在空间中出现。此外,我们使用正规化术语以无监督的方式识别Biggan潜在空间中的可解释方向。最后,我们提供了经验证据,表明当应用于过度参数的潜在空间时,黑森的惩罚会鼓励大量收缩。
Existing disentanglement methods for deep generative models rely on hand-picked priors and complex encoder-based architectures. In this paper, we propose the Hessian Penalty, a simple regularization term that encourages the Hessian of a generative model with respect to its input to be diagonal. We introduce a model-agnostic, unbiased stochastic approximation of this term based on Hutchinson's estimator to compute it efficiently during training. Our method can be applied to a wide range of deep generators with just a few lines of code. We show that training with the Hessian Penalty often causes axis-aligned disentanglement to emerge in latent space when applied to ProGAN on several datasets. Additionally, we use our regularization term to identify interpretable directions in BigGAN's latent space in an unsupervised fashion. Finally, we provide empirical evidence that the Hessian Penalty encourages substantial shrinkage when applied to over-parameterized latent spaces.