论文标题

假设自动驾驶的运动预测

What-If Motion Prediction for Autonomous Driving

论文作者

Khandelwal, Siddhesh, Qi, William, Singh, Jagjeet, Hartnett, Andrew, Ramanan, Deva

论文摘要

预测道路参与者的长期未来动议是对安全自动驾驶汽车(AVS)部署的核心挑战。可行的解决方案必须考虑到静态几何环境,例如道路车道,以及由多个参与者引起的动态社会互动。尽管最近的深层体系结构在基于距离的预测指标上取得了最新的性能,但这些方法会产生预测的预测,而无需考虑AV的预期运动计划。相比之下,我们提出了一种基于图形的注意方法,该方法具有可解释的几何(Actor-lane)和社会(演员演员)关系,该方法支持注射反事实的几何目标和社会环境。我们的模型可以产生以假设或“假设”道路通道和多演员相互作用为条件的多种预测。我们表明,这种方法可以在计划循环中使用,以推理与AV的预期途径直接相关的未观察到的原因或不太可能的未来。

Forecasting the long-term future motion of road actors is a core challenge to the deployment of safe autonomous vehicles (AVs). Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors. While recent deep architectures have achieved state-of-the-art performance on distance-based forecasting metrics, these approaches produce forecasts that are predicted without regard to the AV's intended motion plan. In contrast, we propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships that supports the injection of counterfactual geometric goals and social contexts. Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions. We show that such an approach could be used in the planning loop to reason about unobserved causes or unlikely futures that are directly relevant to the AV's intended route.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源