论文标题

所有循环香蕉振幅的分析结构

Analytic Structure of all Loop Banana Amplitudes

论文作者

Bönisch, Kilian, Fischbach, Fabian, Klemm, Albrecht, Nega, Christoph, Safari, Reza

论文摘要

使用Gelfand-Kapranov-Zelevinsk \uı系统进行无限的一系列完整相交的Calabi-yau歧管的原始共同体,其尺寸是循环订单减去一​​个,我们完全阐明了所有香蕉剂量具有任意质量的所有香蕉分析结构。特别是,我们发现,高能量状态中的主要对数结构与最大单位单操作的点相对应,这取决于镜像环境空间中新颖的$ \ widehatγ$ class评估,而这种振幅的想象中的一部分是由$ \ widhat goodhat gridhat griard callab callab callab callab callab callab callab callab callab callab callab callab callab callia。我们为前者以及Frobenius $κ$ constant提供了简单的闭合循环公式,这些公式确定了振幅的行为,当动量正方形等于Zeta值以Zeta值等于质量平方时。我们通过为后一种情况提供了一组任意质量的完整(非态)Picard-fuchs微分方程,从而将以前的工作从三个循环扩展到四个循环。这允许在很短的时间内评估具有凸起器的振幅以及其他主积分,以对物理参数的所有值进行很高的数值精度。使用最近对周期的$ p $ - 亚种分析,我们确定了最大切割的质量四环振幅在吸引子点上,就模块化重量的周期和四个Hecke特征形式的时期以及其Meromormorphic Cousins的列型。

Using the Gelfand-Kapranov-Zelevinsk\uı system for the primitive cohomology of an infinite series of complete intersection Calabi-Yau manifolds, whose dimension is the loop order minus one, we completely clarify the analytic structure of all banana amplitudes with arbitrary masses. In particular, we find that the leading logarithmic structure in the high energy regime, which corresponds to the point of maximal unipotent monodromy, is determined by a novel $\widehat Γ$-class evaluation in the ambient spaces of the mirror, while the imaginary part of the amplitude in this regime is determined by the $\widehat Γ$-class of the mirror Calabi-Yau manifold itself. We provide simple closed all loop formulas for the former as well as for the Frobenius $κ$-constants, which determine the behaviour of the amplitudes, when the momentum square equals the sum of the masses squared, in terms of zeta values. We extend our previous work from three to four loops by providing for the latter case a complete set of (inhomogenous) Picard-Fuchs differential equations for arbitrary masses. This allows to evaluate the amplitude as well as other master integrals with raised powers of the propagators in very short time to very high numerical precision for all values of the physical parameters. Using a recent $p$-adic analysis of the periods we determine the value of the maximal cut equal mass four-loop amplitude at the attractor points in terms of periods of modular weight two and four Hecke eigenforms and the quasiperiods of their meromorphic cousins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源