论文标题

tau矩阵的特征值和特征向量,以及马尔可夫流程和经济学的应用

Eigenvalues and Eigenvectors of Tau Matrices with Applications to Markov Processes and Economics

论文作者

Ekström, Sven-Erik, Garoni, Carlo, Jozefiak, Adam, Perla, Jesse

论文摘要

在矩阵位移分解的上下文中,Bozzo和di fiore引入了所谓的$τ_ {\ varepsilon,φ} $ algebra,这是Bini和Capovani最初提出的较知名$τ$ algebra的概括。我们研究了$τ_ {\ varepsilon,φ} $代数的发电机$ t_ {n,\ varepsilon,φ} $的特征值和特征向量的属性。特别是,我们得出了$ t_ {n,\ varepsilon,φ} $和相关特征向量的异常值的渐近学;我们获得了$ t_ {n,\ varepsilon,φ} $的特征值的方程式,该方程也提供了$ t_ {n,\ varepsilon,φ} $的特征向量;然后,我们计算$ t_ {n,\ varepsilon,φ} $的完整特征组成,在特定情况下$ \varepsilonφ= 1 $。我们还在排队模型,随机步行和扩散过程的背景下提出了结果的应用,并特别注意了它们在财富/收入不平等和投资组合动态的研究中的影响。

In the context of matrix displacement decomposition, Bozzo and Di Fiore introduced the so-called $τ_{\varepsilon,φ}$ algebra, a generalization of the more known $τ$ algebra originally proposed by Bini and Capovani. We study the properties of eigenvalues and eigenvectors of the generator $T_{n,\varepsilon,φ}$ of the $τ_{\varepsilon,φ}$ algebra. In particular, we derive the asymptotics for the outliers of $T_{n,\varepsilon,φ}$ and the associated eigenvectors; we obtain equations for the eigenvalues of $T_{n,\varepsilon,φ}$, which provide also the eigenvectors of $T_{n,\varepsilon,φ}$; and we compute the full eigendecomposition of $T_{n,\varepsilon,φ}$ in the specific case $\varepsilonφ=1$. We also present applications of our results in the context of queuing models, random walks, and diffusion processes, with a special attention to their implications in the study of wealth/income inequality and portfolio dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源